Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
J Infect Chemother ; 2022 Oct 23.
Article in English | MEDLINE | ID: covidwho-2233677

ABSTRACT

INTRODUCTION: Early diagnosis and appropriate infection control are important to prevent the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, we aimed to assess the diagnostic performance of SARS-CoV-2 rapid antigen detection (RAD) tests and the factors that cause nonspecific reactions. METHODS: Nasopharyngeal swab specimens (n = 100), sputum specimens (n = 10), and lithium-heparin plasma samples (n = 100) were collected. We evaluated Espline®SARS-CoV-2 (Espline) and SARS-CoV-2 Rapid Antigen Test that also known as STANDARD Q® (STANDARD Q), with reverse transcription-polymerase chain reaction (RT-PCR) and Lumipulse® Presto SARS-CoV-2 Ag as reference tests. In addition, we investigated the effects of inadequate pretreatment methods and five potential causes of nonspecific reactions. RESULTS: The sensitivities of Espline and STANDARD Q were 60% and 57%, respectively, and their specificity was 100%. It was confirmed that the judgment line for the positive insufficiently mixed specimens was faint. A false-positive result was observed with STANDARD Q when sputum was used as a specimen to investigate judgment the effect of viscosity. CONCLUSIONS: Espline and STANDARD Q show good sensitivity for specimens with Ct values less than 25, but specimens collected within 9 days of symptom onset may still give false negatives. The test should be performed carefully, and the results should be judged comprehensively, taking into account clinical symptoms and patient background.

2.
International Journal of Environmental Research and Public Health ; 19(9):5773, 2022.
Article in English | ProQuest Central | ID: covidwho-1837965

ABSTRACT

Metal mesh devices (MMDs) are novel materials that enable the precise separation of particles by size. Structurally, MMDs consist of a periodic arrangement of square apertures of characteristic shapes and sizes on a thin nickel membrane. The present study describes the separation of aerosol particles using palm-top-size collection devices equipped with three types of MMDs differing in pore size. Aerosols were collected at a farm located in the suburbs of Nairobi, Kenya;aerosol particles were isolated, and pathogenic bacteria were identified in this microflora by next-generation sequencing analysis. The composition of the microflora in aerosol particles was found to depend on particle size. Gene fragments were obtained from the collected aerosols by PCR using primers specific for the genus Mycobacterium. This analysis showed that Mycobacterium obuense, a non-tuberculous species of mycobacteria that causes lung diseases, was present in these aerosols. These findings showed that application of this MMD analytical protocol to aerosol particles can facilitate the investigation of airborne pathogenic bacteria.

SELECTION OF CITATIONS
SEARCH DETAIL